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Wavelet Transform

By dilation and translation of the basic function ψ, the wavelet
ψb,a(t) is defined by [5, p. 63]:

ψb,a(t) := |a|−ρψ
(
t− b
a

)
, t ∈ R, b ∈ R, a ∈ R0 = R\{0}, ρ > 0.

(1)

If ρ = 1
2 , then the mapping ψ → ψb,a is a unitary operator from

L2(R) onto itself.
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The wavelet transform W (b, a) of f with respect to the wavelet
ψb,a(t) is defined by

W (b, a) :=

∫
R
f(t)ψb,a(t)dt, (2)

provided the integral exists. If ρ = 1
2 and ψ ∈ L2(R), then the

wavelet transform maps each L2-function f on R to a function W
on R× R0. From Eq. (2) it follows that

W (b, a) = (f ∗ θa,0)(b), (3)

where θ(x) := ψ(−x).
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If f ∈ Lp(R) and ψ ∈ Lq(R) then by [2, p. 122],

f ∗ θa,0(b) ∈ Lr(R), 1 +
1

r
=

1

p
+

1

q
.

Now, applying Fourier transform:

f̂(ω) := F(f)(ω) =

∫ ∞
−∞

f(x)e−ixωdx, (4)

to (3) and using convolution property, we get

W (b, a) =
1

2π
|a|−ρ

∫
R
eibωf̂(ω)ψ̂(aω)dω. (5)
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Moreover, if f ∈ L2(R) and ψ ∈ L2(R) satisfies the following ad-
missibility condition:

Cψ :=

∫
R

|ψ̂(w)|2

|w|
dw <∞, (6)

then the following inversion formula for the wavelet transform with
ρ = 1

2 , holds:

1

Cψ

∫
R

∫
R0

1√
|a|
W (b, a)ψ

(
x− b
a

)
dbda

a2
= f(x). (7)

The existent applications of wavelet methods in mathematical anal-
ysis are rich. The requirements of modern mathematics, mathemat-
ical physics and engineering, need to incorporate ideas from wavelet
analysis to the distribution theory.
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Testing function space Gα,β(R) and its dual

Let us recall the definition of the space Gα,β(R) from [5, pp. 48-49].
Assume that a positive and continuous function ζα,β(t) on R is given
by

ζα,β(t) =


eαt 0 ≤ t <∞

eβt −∞ < t < 0,

where α, β ∈ R.
Then Gα,β(R) denotes the space of all complex-valued

smooth functions ψ(t) on −∞ < t < ∞ such that for each k =
0, 1, 2, ...,

γk(ψ) = supt∈R|ζα,β(t)Dkψ(t)| <∞, where Dk = ( ddt)
k,

k = 0, 1, 2, ....
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Gα,β is a vector space. The topology over Gα,β is generated by the
sequence of seminorms {γk}∞k=0 [5]. A sequence {ψν}∞ν=1 is a Cauchy
sequence in Gα,β if for each non-negative integer k, γk(ψµ−ψν)→ 0
as µ, ν → ∞ independently of each other. The space Gα,β is a
sequentially complete space and therefore it is a complete countably
multinormed space and so a Fréchet space. D is the space of smooth
functions on R having compact support. The topology of D is that
which makes its dual the space D′ of Schwartz distributions on R.
Since D ⊂ Gα,β and the topology of D is stronger than that induced
on D by Gα,β , it follows that the restriction of any f ∈ G′α,β to D
is in D′ . For details, see ([5]).
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Lemma

If ψ ∈ Gα,β , then ψ( t−ba ) ∈ Gα,β for α ≤ 0 and β ≥ 0 when |a| ≥ 1

and ψ( t−ba ) ∈ Gα,β for α ≥ 0 and β ≤ 0 when 0 < |a| < 1.
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Distributional Wavelet Transform

We assume ψ ∈ Gα,β(R) is the basic function generating the wavelet
ψb,a(t) given in Eq. (1). Since function ψ

(
t−b
a

)
belongs to Gα,β for

fixed b and a 6= 0 as a function of t under condition of Lemma 1, for
f ∈ G′α,β the wavelet transform W (b, a) of f is defined by

W (b, a) =
1√
|a|

〈
f(t), ψ

(
t− b
a

)〉
, a ∈ R0, b ∈ R. (8)

For convenience, in what follow we shall deal with

W̃ (b, a) =

〈
f(t), ψ

(
t+ b

a

)〉
, a ∈ R0, b ∈ R, (9)

instead of W (b, a).
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Theorem

Let f ∈ G′α,β , ψ ∈ Gα,β and W̃ (b, a) be defined by Eq. (9). Then

W̃ (b, a) is smooth and

Dk
b W̃ (b, a) =

〈
f(t), Dk

bψ

(
t+ b

a

)〉
, k = 1, 2, 3...

and

Dk
aW̃ (b, a) =

〈
f(t), Dk

aψ

(
t+ b

a

)〉
, k = 1, 2, 3...
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Remark
Using change of variables and following the above technique differ-
entiability of W (b, a) is also be proved.

Theorem
For real b and a ∈ R0 let W (b, a) be defined as in Eq. (8), then
under conditions of Lemma 1,

W (b, a) = O

(
1

|a|k+
1
2

)
, |a| → 0, for some k ∈ N.
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Inversion of the Distributional Wavelet Transform

In order to derive inversion formula for the distributional wavelet
transform, we construct a structure formula for the distribution f ∈
G
′
α,β for α, β > 0 [4, pp. 272-274]. If f ∈ G′α,β and φ ∈ Gα,β , then

by boundedness property of distributions, there exists a C > 0 and
a non-negative integer m satisfying

| 〈f, φ〉 | ≤ C max
0≤k≤m

sup
t∈R+

∣∣∣eαtDk
t φ(t)

∣∣∣ , ∀t ≥ 0, (10)

and
| 〈f, φ〉 | ≤ C max

0≤k≤m
sup
t∈R−

∣∣∣eβtDk
t φ(t)

∣∣∣ , ∀t < 0. (11)
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Let m be the least possible value of the non-negative inte-
ger. Then

| 〈f, φ〉 | ≤ C max
0≤k≤m

sup
t∈R+

∣∣∣∣∫ t

−∞

∣∣∣∣ ddt [eαtDk
t φ(t)

]
dt

∣∣∣∣∣∣∣∣
≤ C max

0≤k≤m
sup
t∈R+

∣∣∣∣∫ t

−∞

∣∣∣eαtDk+1
t φ(t) + αeαtDk

t φ(t)
∣∣∣ dt∣∣∣∣

≤ C
m∑
k=0

∫ ∞
−∞

∣∣∣eαtDk+1
t φ(t) + αeαtDk

t φ(t)
∣∣∣ dt

≤ C ′
m∑
k=0

∥∥∥eαt(Dt + t)Dk
t φ(t)

∥∥∥
2
.
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Now using the Hahn-Banach theorem and the Riesz repre-
sentation theorem we get gk belonging to the space L2(R) satisfying

| 〈f, φ〉 | =
m∑
k=0

〈
gk(t), e

αt(Dt + t)Dk
t φ(t)

〉
.

Therefore our structure formula is (for t ≥ 0)

f =

m∑
k=0

(−1)k+1Dk
t (Dt − t)

{
eαtgk(t)

}
, (12)

similarly for t < 0

f =
m∑
k=0

(−1)k+1Dk
t (Dt − t)

{
eβtgk(t)

}
. (13)
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We now establish the inversion formula for the distributional wavelet
transform using Eq. (7).

Theorem

Assume that the wavelet transform W (b, a) of f ∈ G′α,β is given by
Eq. (8). Then

lim
N→∞
R→∞

〈
1

Cψ

∫ R

−R

∫ N

−N
W (b, a)ψb,a(x)

dbda

a2
, φ(x)

〉
= 〈f, φ〉 , (14)

for each φ ∈ D, a ∈ R0 and b ∈ R, where ψb,a(x) is defined by (1)
with ρ = 1.
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Example
Let us consider the Mexican hat wavelet,defined by

ψ(t) = (1− t2) exp(−t2/2) = − d2

dt2
exp(−t2/2),

and its Fourier transform is defined by

ψ̂(w) =
√

2πw2 exp(−w2/2).

It is a C∞- function and well localized in time and frequency domains.
The kth derivative of Mexican hat wavelet given by

Dkψ(t) =

k∑
r=0

(
k
r

)
D(r)(1− t2)D(k−r) exp(−t2/2).
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Example

Using property of Hermite polynomial [3] we write the last expression
as

Dkψ(t) =

k∑
r=0

(
k
r

)
D(r)(1− t2) exp(−t2/2)Hk−r(t)

= k(1− t2) exp(−t2/2)Hk(t) +

(
k
r

)
(−2t) exp(−t2/2)Hk−1(t),

where Hk(t) denotes the Hermite polynomial. Therefore, ψ(t) ∈
Gα,β(R) and the Mexican hat wavelet transform of f ∈ G′α,β is then
defined by Eq. (8).
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Paley-Wiener-Schwartz type theorem

Now, we discuss on extension of the wavelet transform
on distribution spaces of compact support and develop the Paley-
Wiener-Schwartz type theorem for the wavelet transform. Paley-
Wiener-Schwartz type theorem for the wavelet transform as double
Fourier transform is also established.
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Wavelet transform in Fourier space

In this section we assume that wavelets are such that their
Fourier transforms are of compact support. To deal with such wavelets
we suppose that ψ ∈ S (R), then ψb,a ∈ S (R) for fixed a ∈ R0, b ∈
R. We extend the wavelet transform in Fourier space defined by

W (b, a) =
|a|1/2

2π

∫
R
eibωf̂(ω)ψ̂(aω)dω. (15)

Assume that f̂(ω) ∈ D′(R) and ψ̂(ω) ∈ S (R) is of compact sup-
port, then ψ̂(aω)f̂(ω) ∈ E

′
(R).
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Generalized wavelet transform

Now, we define generalized wavelet transform of f ∈ Z ′(R)

as generalized inverse Fourier transform of f̂(·)ψ̂(a·):

W (b, a) =
|a|1/2

2π

〈
f̂(ω), ψ̂(aω)eibω

〉
=
|a|1/2

2π

〈
f̂(ω)ψ̂(aω), eibω

〉
=

1

2π

〈
1

|a|1/2
f̂(u/a)ψ̂(u), eibu/a

〉
=

〈
1

|a|1/2
ga(u), eibu/a

〉
.

(16)

where ga(u) = f̂(u/a)ψ̂(u) ∈ E
′
(R), a ∈ R0.

Assume that suppψ̂(u) = [−r, r], r > 0. Then suppga(u) =
[−r, r], r > 0.
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Theorem
(1a) The wavelet transform of distribution ga with compact support
in R is an entire functionW (ζ, a) of the complex variable ζ = b+iη ∈
C, satisfying the following property:
There are constants C and r and an integer N ≥ 0 such that

|W (ζ, a)| ≤ C

|a|1/2
(1 + |ζ/a|)Ner|η/a|, ∀ζ ∈ C. (17)

(1b) Conversely, if W (ζ, a) is an entire function in C × R0 which
satisfies (17), then W (b, 1/a) is the double Fourier transform of a
distribution belonging to E ′(R2).
(2a) The wavelet transform of an infinitely differentiable function
with compact support in R is an entire function W (ζ, a) in C×R+

satisfying the following property:
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Theorem (cont.)

There are constant C and r > 0 and an integer N ≥ 0 such that

|W (ζ, a)| ≤ C

|a|1/2
(1 + |ζ/a|)−Ner|η/a|, ∀ζ ∈ C, a ∈ R+. (18)

(2b) Assume that ψ ∈ S (R). Then every entire function on C×R0

satisfying (18) is the wavelet transform of a decreasing C∞-function
f such that f ∗ ψ̄(x) is of compact support.
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Paley-Wiener-Schwartz type theorem for the wavelet
transform as double Fourier transform of distribution
spaces

The following relations between wavelet transform on R
and two dimensional Fourier transform is given in [1]:

F (b, a) := |a|−1/2W (b, a) =

(
1

2π

)2 ∫ ∞
−∞

∫ ∞
−∞

eiub+iva ψ̂(v/u)
f̂(u)

|u|
dvdu

(19)
where b ∈ R, a ∈ R0 = R\{0}.

Abhishek Singh by Abhishek Singh (Joint work with Professor R.S. Pathak) India

mathdras@gmail.com



Distributional Wavelet Transform Paley-Wiener-Schwartz type theorem for the wavelet transform Generalization of Paley-Wiener-Schwartz type theorem

Theorem
(1a) Let W (ζ, τ), ζ = b + iη, τ = a + iξ be the extended wavelet
transform:

W (ζ, τ) =

(
1

2π

)2 〈
|τ |1/2Φ(u, v), eiζu+iτv

〉
of f such that the function Φ(u, v) := ψ̂(v/u) f̂(u)|u| ∈ E ′(R2) with
supp(Φ) ⊂ B = {(u, v) : u2 + v2 ≤ r2}. Then for every positive
integer N there exists a positive constant CN such that

|W (ζ, τ)| ≤ CN |τ |1/2(1 + |ζ + τ |)Ner|Im(ζ+τ)|. (20)
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Theorem (cont.)

(1b) Conversely, every entire function in C2 satisfying (20) is the dou-
ble Fourier transform of a distribution belonging to E ′(R2). However,
W (ζ, a) = F−1[|a|1/2f̂(·)ψ̂(a·)](ζ) ∀a ∈ R0, which satisfies (20) is
the wavelet transform of a distribution Φ(u, v) ∈ E ′(R2). (2a) As-
sume that f and ψ such that Φ(u, v) ∈ C∞c (R2). Then the wavelet
transform of f is an entire function W (ζ, a) in C2 satisfying the fol-
lowing property:
There are constant C and r > 0 and an integer N ≥ 0 such that

|W (ζ, τ)| ≤ CN (1 + |ζ + τ |)−Ner|Im(ζ+τ)|. (21)

(2b) Conversely, every entire function on C2 satisfying (21) is the
double Fourier transform of a C∞-function with compact support in
R2.
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Generalization of Paley-Wiener-Schwartz type theorem

Theorem

The wavelet transform of an entire function ga satisfying the condi-
tion

|ga(z)| ≤
C√
|a|

(
1 +

∣∣∣z
a

∣∣∣)M er|
y
a | for all z ∈ C, (22)

considered as a functional on E ′(R), has the form

W (b, a) =

m∑
k=1

Pk(
∂

∂b
)Fk(b). (23)

Conversely, the wavelet transform of a functional of the form (23) is
an entire function satisfying (22).
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In order to give an example, we extend the Mexican hat
wavelet transform in the Fourier space as follows:

We consider Mexican hat wavelet transform defined by
Pathak et al. [2, p.470] as

(Wf)(b, a) = (2π)
1
2a

5
2

∞∫
−∞

f(t)D2
t k(b− t, a2)dt, (24)

where

k(b− t, a2) = ka2(b− t) =
1

(2π)
1
2a
e−

(b−t)2

2a2 , b ∈ C, a ∈ R+.
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(Wf)(b, a) = (2π)
1
2a

5
2

∞∫
−∞

f(t)D2
t ka2(b− t)dt

= −(2π)
1
2a

5
2

∫
R

ˆf (2)(w)k̂a2(w)eibwdw. (25)

Taking

k̂a2(w) =
1

(2π)
1
2a

∫
R
e
− t2

(2a2) e−iwtdt

= e−
a2w2

2 .
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Therefore, (25) becomes

(Wf)(b, a) = −(2π)
1
2a

5
2

∫
R

ˆf (2)(w)e−
a2w2

2 eibwdw

= −(2π)
1
2a

3
2

〈
1

a
g(2)a (u), e

ibu
a

〉
.

The above relation extends the Mexican hat wavelet transform as
generalized inverse Fourier transform of a function g(2)a (u) = ˆf (2)

(
u
a

)
e−

u2

2 ,
a ∈ R+. Thus, using this relation we define the following example
for the generalized Paley-Wiener- Schwartz type theorem.
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Example

Consider an entire function g(2)a (u) ∈ E ′(R) satisfying∣∣∣g(2)a (u)
∣∣∣ ≤ C ′

a
3
2

(
1 +

∣∣∣u
a

∣∣∣)M ′ er| ya |e− y2

2 .

Then by using Theorem 11, its Mexican hat wavelet transform can
be expressed as:

(Wf)(b, a) =

m∑
k=1

Pk(
∂

∂b
)F

(2)
k (b),

where

|F (2)
k (b, a)| ≤ C ′a

3
2

∞∫
−∞

|b|l
(
1 + |ua |

)M ′
er|

y
a
|e−

y2

2 e
−yb
a((u

a

)2
−
(y
a

)2
+ Cb2β + 1

)pdu.
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